spark sql 从数据库获取数据 hive和sparksql的区别?

[更新]
·
·
分类:互联网
4470 阅读

spark sql 从数据库获取数据

hive和sparksql的区别?

hive和sparksql的区别?

功能点上: hive:
1、数据存储
2、数据清洗 spark:1、数据清洗 2、流式计算 hive可以通过Hql方式读hive数据进行数据清洗 spark可以通过sparkSQL或sparkCore方式进行数据清洗,可以读取的数据源包活jdbc,hive,elasticsearch,文件等 所以spark可以取代hive的数据清洗功能,也可以把hive做为数据源 hive的强项在于1、大数据存储,2、通过sql方式进行MapReduce操作,降低大数据使用门槛 spark强项在于1、基于内存的MapReduce操作,速度快2、流式计算(对标产品flink,storm)

spark parquet只能用于spark sql么?

1)过去整个业界对大数据的分析的技术栈的Pipeline一般分为以下两种方式:a)Data Source -gt HDFS -gt MR/Hive/Spark(相当于ETL)-gt HDFS Parquet -gt Spark SQL/Impala -gt ResultService(可以放在DB中,也有可能被通过JDBC/ODBC来作为数据服务使用);b)Data Source -gt Real timeupdate data to HBase/DB -gt Export to Parquet -gt Spark SQL/Impala -gt ResultService(可以放在DB中,也有可能被通过JDBC/ODBC来作为数据服务使用);上述的第二种方式完全可以通过Kafka Spark Streaming Spark SQL(内部也强烈建议采用Parquet的方式来存储数据)的方式取代2)期待的方式:DataSource -gt Kafka -gt Spark Streaming -gt Parq

大数据主要学习哪些内容?

这是一个非常好的问题,作为一名IT从业者,同时也是一名教育工作者,我来回答一下。
大数据经过多年的发展,已经逐渐形成了一个比较庞大且系统的知识体系,整体的技术成熟度也已经比较高了,所以当前学习大数据技术也会有一个比较好的学习体验。
由于大数据涉及到的内容比较多,而且大数据技术与行业领域也有比较紧密的联系,所以在学习大数据的时候,既可以从技术角度出发,也可以立足行业来学习大数据。对于学生来说,可以从大数据技术体系来学习,而对于职场人来说,可以结合自身的行业和岗位任务来学习大数据。
不论是学生还是职场人,要想学习大数据都需要掌握以下几个基本内容:
第一:计算机基础知识。计算机基础知识对于学习大数据技术是非常重要的,其中操作系统、编程语言和数据库这三方面知识是一定要学习的。编程语言可以从Python开始学起,而且如果未来要从事专业的大数据开发,也可以从Java开始学起。计算机基础知识的学习具有一定的难度,学习过程中要重视实验的作用。
第二:数学和统计学基础知识。大数据技术体系的核心目的是“数据价值化”,数据价值化的过程一定离不开数据分析,所以作为数据分析基础的数学和统计学知识就比较重要了。数学和统计学基础对于大数据从业者未来的成长空间有比较重要的影响,所以一定要重视这两个方面知识的学习。
第三:大数据平台基础。大数据开发和大数据分析都离不开大数据平台的支撑,大数据平台涉及到分布式存储和分布式计算等基础性功能,掌握大数据平台也会对于大数据技术体系形成较深的认知程度。对于初学者来说,可以从Hadoop和Spark开始学起。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!