查看索引为全局索引还是本地索引 数据库中的索引,原理是什么?为什么查询使用索引就会快?

[更新]
·
·
分类:互联网
3746 阅读

查看索引为全局索引还是本地索引

数据库中的索引,原理是什么?为什么查询使用索引就会快?

数据库中的索引,原理是什么?为什么查询使用索引就会快?

数据库索引可以理解成图书馆的书架,书架按书目分类,或者理解成一本书的目录。想想如果没有这些目录,要找一本书中内容,就要从头把书翻一遍,或者把图书馆的书都找一遍,这样会有多慢?
数据库建立索引也是这个原理,数据有了分类目录了,查询数据的时候,先查找目录就会快了很多。
不过对现在的海量数据来讲,有了索引还是杯水车薪,查询依然很慢,而且建立索引要占用额外的存储空间,对数据库来讲存贮空间是非常值钱的,商业数据库存贮空间收费昂贵。
真正的海量数据存贮,查询效率都是用计算机硬件堆起来的,就是用钱堆起来的,不要想在软件上做点优化就会有多少本质的提高。
具体硬件优化有很多手段,前端查询,数据库缓存,分布式应用等等,要想掌握好数据库的优化,去看看实际的商业应用案例最好,书本上的那些东西,没多大意义。

MYSQL中MyISAM和InnoDB索引的区别?

从 MySQL 5.7 开始,开发人员改变了 InnoDB 构建二级索引的方式,采用自下而上的方法,而不是早期版本中自上而下的方法了。在这篇文章中,我们将通过一个示例来说明如何构建 InnoDB 索引。最后,我将解释如何通过为 innodb_fill_factor 设置更合适的值。
索引构建过程
在有数据的表上构建索引,InnoDB 中有以下几个阶段:1.读取阶段(从聚簇索引读取并构建二级索引条目)2.合并排序阶段3.插入阶段(将排序记录插入二级索引)在 5.6 版本之前,MySQL 通过一次插入一条记录来构建二级索引。这是一种“自上而下”的方法。搜索插入位置从树的根部(顶部)开始并达到叶页(底部)。该记录插入光标指向的叶页上。在查找插入位置和进行业面拆分和合并方面开销很大。从MySQL 5.7开始,添加索引期间的插入阶段使用“排序索引构建”,也称为“批量索引加载”。在这种方法中,索引是“自下而上”构建的。即叶页(底部)首先构建,然后非叶级别直到根(顶部)。
示例
在这些情况下使用排序的索引构建:
ALTER TABLE t1 ADD INDEX(or CREATE INDEX)
ALTER TABLE t1 ADD FULLTEXT INDEX
ALTER TABLE t1 ADD COLUMN, ALGORITHM INPLACE
OPIMIZE t1
对于最后两个用例,ALTER 会创建一个中间表。中间表索引(主要和次要)使用“排序索引构建”构建。
算法
在 0 级别创建页,还要为此页创建一个游标
使用 0 级别处的游标插入页面,直到填满
页面填满后,创建一个兄弟页(不要插入到兄弟页)
为当前的整页创建节点指针(子页中的最小键,子页码),并将节点指针插入上一级(父页)
在较高级别,检查游标是否已定位。如果没有,请为该级别创建父页和游标
在父页插入节点指针
如果父页已填满,请重复步骤 3, 4, 5, 6
现在插入兄弟页并使游标指向兄弟页
在所有插入的末尾,每个级别的游标指向最右边的页。提交所有游标(意味着提交修改页面的迷你事务,释放所有锁存器)
为简单起见,上述算法跳过了有关压缩页和 BLOB(外部存储的 BLOB)处理的细节。
通过自下而上的方式构建索引为简单起见,假设子页和非子页中允许的 最大记录数为 3
CREATE TABLE t1 (a INT PRIMARY KEY, b INT, c BLOB)
INSERT INTO t1 VALUES (1, 11, hello111)
INSERT INTO t1 VALUES (2, 22, hello222)
INSERT INTO t1 VALUES (3, 33, hello333)
INSERT INTO t1 VALUES (4, 44, hello444)
INSERT INTO t1 VALUES (5, 55, hello555)
INSERT INTO t1 VALUES (6, 66, hello666)
INSERT INTO t1 VALUES (7, 77, hello777)
INSERT INTO t1 VALUES (8, 88, hello888)
INSERT INTO t1 VALUES (9, 99, hello999)
INSERT INTO t1 VALUES (10, 1010, hello101010)
ALTER TABLE t1 ADD INDEX k1(b)
InnoDB 将主键字段追加到二级索引。二级索引 k1 的记录格式为(b, a)。在排序阶段完成后,记录为:
(11,1), (22,2), (33,3), (44,4), (55,5), (66,6), (77,7), (88,8), (99,9), (1010, 10)
初始插入阶段
让我们从记录 (11,1) 开始。
在 0 级别(叶级别)创建页
创建一个到页的游标
所有插入都将转到此页面,直到它填满了
箭头显示游标当前指向的位置。它目前位于第 5 页,下一个插入将转到此页面。
还有两个空闲插槽,因此插入记录 (22,2) 和 (33,3) 非常简单对于下一条记录 (44,4),页码 5 已满(前面提到的假设最大记录数为 3)。这就是步骤。页填充时的索引构建
创建一个兄弟页,页码 6
不要插入兄弟页
在游标处提交页面,即迷你事务提交,释放锁存器等
作为提交的一部分,创建节点指针并将其插入到 【当前级别 1】 的父页面中(即在 1 级别)
节点指针的格式 (子页面中的最小键,子页码) 。第 5 页的最小键是 (11,1) 。在父级别插入记录 ((11,1),5)。
1 级别的父页尚不存在,MySQL 创建页码 7 和指向页码 7 的游标。
将 ((11,1),5) 插入第 7 页
现在,返回到 0 级并创建从第 5 页到第 6 页的链接,反之亦然
0 级别的游标现在指向兄弟页,页码为 6
将 (44,4) 插入第 6 页
下一个插入 - (55,5) 和 (66,6) - 很简单,它们转到第 6 页。
插入记录 (77,7) 类似于 (44,4),除了父页面 (页面编号 7) 已经存在并且它有两个以上记录的空间。首先将节点指针 ((44,4),8) 插入第 7 页,然后将 (77,7) 记录到同级 8 页中。
插入记录 (88,8) 和 (99,9) 很简单,因为第 8 页有两个空闲插槽。
下一个插入 (1010,10) 。将节点指针 ((77,7),8) 插入 1级别的父页(页码 7)。MySQL 在 0 级创建同级页码 9。将记录 (1010,10) 插入第 9 页并将光标更改为此页面。以此类推。在上面的示例中,数据库在 0 级别提交到第 9 页,在 1 级别提交到第 7 页。
我们现在有了一个完整的 B -tree 索引,它是自下至上构建的!
索引填充因子全局变量 innodb_fill_factor 用于设置插入 B-tree 页中的空间量。默认值为 100,表示使用整个业面(不包括页眉)。聚簇索引具有 innodb_fill_factor100 的免除项。 在这种情况下,聚簇索引也空间的 1 /16 保持空闲。即 6.25% 的空间用于未来的 DML。
值 80 意味着 MySQL 使用了 80% 的页空间填充,预留 20% 于未来的更新。如果 innodb_fill_factor100 则没有剩余空间供未来插入二级索引。如果在添加索引后,期望表上有更多的 DML,则可能导致业面拆分并再次合并。在这种情况下,建议使用 80-90 之间的值。此变量还会影响使用 OPTIMIZE TABLE 和 ALTER TABLE DROP COLUMN, ALGOITHMINPLACE 重新创建的索引。也不应该设置太低的值,例如低于 50。因为索引会占用浪费更多的磁盘空间,值较低时,索引中的页数较多,索引统计信息的采样可能不是最佳的。优化器可以选择具有次优统计信息的错误查询计划。
排序索引构建的优点
没有页面拆分(不包括压缩表)和合并
没有重复搜索插入位置
插入不会被重做记录(页分配除外),因此重做日志子系统的压力较小
缺点
ALTER 正在进行时,插入性能降低 Bug#82940,但在后续版本中计划修复。