matlab数据插值怎么理解 matlab中插值时cubic和spline分别什么时候用?

[更新]
·
·
分类:互联网
4161 阅读

matlab数据插值怎么理解

matlab中插值时cubic和spline分别什么时候用?

matlab中插值时cubic和spline分别什么时候用?

只是插值的方式的不同而已。不是专家,就甭考虑这些。
cubic是三次多项式插值方式。spline是三次样条插值。spline的要求要比cubic的要求更高一点,效果也比较好。但是计算时间要长一些。

MATLAB如何选择合适的拟合函数?

用cftool拟合工具箱,可以快速得到你要的拟合函数。
Expotential指数逼近Fourier傅立叶逼近Gaussian 高斯逼近Interpolant 插值逼近Polynomial 多项式逼近Power幂函数逼近拟合结果的确定,主要要看R-square相关系数是否最接近1,RMSE均方根误差是否比较小

matlab一组数据如何求差值?

mrand(1,10) %随机生成的第一组数 nrand(1,12) %随机生成的第二组数 % am(1);bn(1)
; index1 1; index2 1; delt 100; %两个数的差 for i1:length(m) a m(i)
; for j1:length(n) b n(j)
; if abs(a-b)

matlab图像中有多条曲线,只想加粗其中一条曲线,用什么命令?

plot 只是根据你的数据画图,也就是将相邻数据用线段连结起来,本身没有什么拟合作用如果你只是想得到平滑曲线,可以用插值,举个例子:
这里在 y sin(x) 曲线的 [0 2*pi] 区间上取了 7 个点,作图显然不够平滑。下面做Cubic spline 插值(当然也可以选择其他插值方式) 处理:这里的图一样是 plot 绘制的,所以说是否平滑不是 plot 决定的,而是你的数据决定的多条曲线插值也是类似的,常用的插值函数如 spline,interp1 都支持插值多条曲线(即使有不支持或者不方便(例如不同曲线的点数不同)的也可以写个循环解决):

如何用matlab做出来?

方法一、用数据拟合工具箱 Curve Fitting Tool
打开CFTOOL工具箱。在matlab的command window中输入cftool,即可进入数据拟合工具箱。
输入两组向量x,y。
首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。输入以后假定叫x向量与y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。
例如在命令行里输入下列数据:
x [196,186, 137, 136, 122, 122, 71, 71, 70, 33]
y [0.012605 0.013115 0.016866 0.014741 0.022353 0.019278 0.041803 0.038026 0.038128 0.088196]
数据的选取。打开曲线拟合共工具界面,点击最左边的X data和Y data,选择刚才输入的数据,这时界面中会出现这组数据的散点图。
选择拟合方法,点击Fit
左侧results为拟合结果,下方表格为误差等统计数据。
方法二、用神经网络工具箱
1、打开神经网络工具箱,在command window内输入nftool,进入Neural fitting tool
2、导入数据,点击next,导入Inputs为x,Targets为y。
3、选择网络参数,点击next,选择训练集和测试集数量,点next,选隐藏层节点个数。
4、训练数据,点next,选train。
5、绘制拟合曲线,训练完成后电机plot fit
训练结果参数在训练完后自动弹出
神经网络工具箱可以用command写,请搜索关键字matlab 神经网络工具箱函数。
方法三、用polyfit函数写
polyfit函数是matlab中用于进行曲线拟合的一个函数。其数学基础是最小二乘法曲线拟合原理。曲线拟合:已知离散点上的数据集,即已知在点集上的函数值,构造一个解析函数(其图形为一曲线)使在原离散点上尽可能接近给定的值。
调用方法:apolyfit(xdata,ydata,n),
其中n表示多项式的最高阶数,xdata,ydata为将要拟合的数据,它是用数组的方式输入。输出参数a为拟合多项式 ya1x^n ... anx a,共n 1个系数。
%例程Apolyfit(x,y,2)zpolyval(A,x)plot(x,y,r*,x,z,b)
方法四、自行写算法做拟合
请参考数值分析教科书,拟合、插值方法较多,算法并不复杂,灵活套用循环即可